O.P.Code:23CE0119	R23	H.T.No.				
CONTRACTOR OF THE PARTY OF THE	· ·	/ _				

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. III Year I Semester Regular Examinations December-2025 GEOTECHNICAL ENGINEERING

		GEOTECHNICAL ENGINEERING		0	
Tin	ne:	3 Hours	7.5		1.2
		PART-A	Max.	Mar	ks: 70
		(Answer all the Questions $10 \times 2 = 20$ Marks)			
1	a	Define residual and transported soil.	CO1	L1	2M
	b	Write the relationship between bulk density, dry density, and water	CO1	Li	
		content.	COI	L	2M
Ġ	c	Define capillary rise in soils and write the formula for height of capillary rise.	CO2	L1	2M
	d	What is quick sand condition? State the critical hydraulic gradient formula.	CO2	L1	2M
	e	State two assumptions made in Boussinesq's theory of stress distribution	CO3	L1	2M
	f	stress at a point.	CO3	L1	2M
	g	Define primary consolidation and secondary consolidation in soils.	CO4	L1	2M
	h	List two assumptions made in Terzaghi's 1-D consolidation theory.	CO4	L1	2M
	į	Define cohesion (c) and angle of internal friction (φ).	CO5	L1	2M
	j	Write Mohr-Coulomb equation for shear strength and define its terms.	CO5	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I		20.0	
2	a	Explain in detail how soils are formed.	CO1	L2	5M
	b	Briefly explain different types of soil structures which can occur in	CO1	L2	5M
		nature.mass.			
_		OR			-
3		A soil sample has a porosity of 40%. The specific gravity of solids is 2.70. Calculate (a) void ratio, (b) dry density, (c) unit weight if the soil is	CO1	L3	10M
		50% saturated and (d) unit weight if the soil is completely saturated. UNIT-II			
4		Elaborate various factors affecting the permeability of soil.	CO ₂	L2	10M
		OR	2		
5		Figure shows a cross-section through the strata underlying a site.	CO2	L3	10M
		Calculate the equivalent permeability of the layered system in the vertical			
		and horizontal direction. Assume that each layer is isotropic.			1
		TT			
		[3 m k = 0.2 cm/sec	*		
			-		S - 13
		8-5 m 1-5 m k = 0-06 cm/sec			
		-7			2.
10		$k = 5 \times 10^{7} \text{ cm/sec}$			

UNIT-III

6	a	Discuss the basis of the construction of Newmark's influence chart. How it is used.	·CO3	L2	i.
7.	b	A monument weighing 15 MN is erected on the ground surface. Considering the load as a concentrated one, determine the vertical pressure directly under the monument at a depth of 8 m below the ground surface.	CO3	L3	8
		OR			
7		An exaction 3 m x 6 m for foundation is to be made to a depth of 2.5 m	CO ₃	L3	
		below ground level in a soil of bulk unit weight 20 kN/m ³ . What effect this exaction will have on the vertical pressure at a depth of 6 m measured			
		from the ground surface vertically below the centre of foundation? IN for $m=0.43$ and $n=0.86$ is 0.10.	11	6	
		UNIT-IV			
8	a	Differentiate between 'Compaction' and 'Consolidation'.	CO4	L1	
	b	State the assumptions made by Terzaghi for theory of one-dimensional Consolidation.	CO4	L1	
		OR			
9		A compressible layer is expected to have total settlement of 15 cm under a given loading. It settles by 3 cm at the end of two months after the	CO4	L3	1
Ÿ,		application of load increment? How many menths will be required to reach a settlement of 7.5 cm? What is the settlement in 18 months? The			
		layer has double drainage.			= 93
10		UNIT-V	15	5.	
10	a	Explain Mohr-Coulomb theory and draw the failure envelope.	CO ₅	L2	*
	b	Sketch the stress-strain relationship for dense and loose sand.	CO ₅	L2	
` 11		OR			
11		With the help of sketch explain how Direct Shear Test is conducted? What are its merits and demerits?	CO5	L2	1
		*** END ***			